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A unified method to permute vector-stored Upper-triangular-Diagonal factorized

covariance (UD) and vector-stored upper-triangular Square-Root Information (SR1) arrays

is presented. The method involves cyclic permutation of the rows and columns of the

arrays and retriangularization with fast (slow) Givens rotations (reflections). Minimal

computation is performed, and a one-dimensional scratch array is required. To make the
method efficient for large arrays on a virtual memory machine, computations are arranged

so as to avoid expensive paging faults. This method is potentially important for processing

large volumes of radio metric data in the DSN.

I. Introduction

In the reduction of observational data involving simultane-

ous least-squares estimation of many parameters, it is desirable
to examine different modeling scenarios without reprocessing

the data through the filter. Often the analyst will estimate
a full contingent of system parameters in the initial filter pass.

A reduced state estimate, reflecting a different modeling sce-

nario, can then be obtained from this initial pass. Furthermore,

the sensitivity of the reduced state to the excluded parameters

is readily obtainable. Application of a priori information for

the excluded parameters to the sensitivity and subsequent aug-

mentation of the reduced state by these perturbations then

yields a more conservative assessment of the reduced state

errors. This type of analysis is particularly useful when the

reduced state is sensitive to the excluded parameters that are

insensitive to data [ 1 ].

Upper-triangular data structures, such as those encountered

in an Upper-triangular-Diagonal factorized covariance filter

(UD filter) or in an upper-triangular Square-Root Information

filter (SR1 filter), are conducive to computing these reduced

state estimates. In a UD filter, it is necessary to permute the
rows of the UD array in order to compute the reduced esti-

mate. The rows corresponding to the parameters that are to be

excluded must be moved below those corresponding to the

parameters that are to be included in the reduced estimate. In

an SRI filter, it is necessary to permute the columns of the

SRI array in order to compute the reduced estimate. The
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columns corresponding to the parameters that are to be

excluded must be moved to the right of the columns corre-

sponding to those that are to be included in the reduced

estimate. 1

A brute force method to accomplish these permutations

reorders the rows (columns) of the UD (SRI) array into a

two-dimensional work array. To retriangularize this two-

dimensional array, one can then post(pre)-multiply it by an

implicitly defined orthogonal transformation composed of

Householder reflections. 2 This method is sound and numeri-

cally stable due to the orthogonality of the transformation.

Furthermore, the commercially available Estimation Subrou-

tine Library (ESL) has standard routines to conveniently per-

form these permutations and subsequent retriangularizations

[2]. However, this method requires a two-dimensional work

array to store the permuted UD (SRI) array. For large-scale

systems, such as those encountered for Global Positioning

System (GPS) studies, it is not at all uncommon to estimate on

the order of 1000 parameters. This translates into four million

extra bytes of storage. Additionally, over 3000 parameters are

routinely solved when DSN VLBI data are processed with

MASTERFIT software [3]. Moreover, for systems of this

order, retriangularization is computationally expensive.

In 1986, Bierman (personal communication) suggested that

the necessary reordering of UD arrays be performed as a series

of pairwise permutations in such a way that the upper-

triangular structure of the UD array is always maintained. Each

pairwise permutation could be performed as a suboptimal

noise-free measurement update:

epdate = ([ - GH) P(I - GH) t + RGG t

where Pupdate is then the permuted covariance of the covari-

ance P. The noise R is set equal to zero, and the gain G and

design H are chosen so that (I - GH) is a permutation opera-

tor. Such a permutation operator that permutes parameters i

and j can be expressed as

where e i is a column vector whose elements are zero except

element i, which is 1. Trivially H = (e i - ej) t and G = H r. In

practice this computation is implemented with an optimal

measurement update using the Bierman UD measurement

update algorithm and a rank-1 update to include the effect

of the suboptimality of the gain. This method eliminated the

need for a two-dimensional scratch array. Software was even-

tually written that exploited the structure of the suboptimal

gain G and design H. This method still required several scratch

arrays and a multitude of pairwise permutations. 3

In 1987, Wolff (personal communication) suggested that

the same pairwise permutations could be performed on an SRI

array with retriangularization accomplished after each column

exchange with slow Givens reflections. 4 This method also

eliminated the need for a two-dimensional work array. How-

ever, in the retriangularization process, elements not consistent

with the upper-triangular data structure of the SRI array

were created. Each inconsistent element required another slow

Givens reflection. Subsequently, this method required on the

order of n 2 slow Givens reflections, where n is the column dis-

tance between the two parameters of the exchange. Further-

more, this method required two explicit scratch arrays. One of

the scratch arrays stored the right column of the exchange

while the other was used to store elements that were created in

the retriangularization process, s

Also in 1987, Pombra suggested a technique that eliminated

the need to perform a multitude of these pairwise permuta-

tions in reordering a UD array. 6 His technique was to insert

into the covariance an artificial parameter with zero variance

and zero correlation with the other parameters. This is easily

accomplished by inserting into the UD array a row and column

of zeros. A parameter could then be moved directly into its

proper place by performing a pairwise permutation of this

artificial parameter and the parameter that is desired to reside

in its place. After the permutation is performed, this artificial

parameter can then be deleted from the UD array. This is also

easily accomplished by removing from the UD array the appro-

priate row and column of zeros. This technique drastically

I - GH = I - (_ - _) (e i - el)r

1S. C. Wu et al., Oasis Mathematical Description, JPL Publication

D-3139 (internal document), Jet Propulsion Laboratory, Pasadena,

California, April 1, 1986.

2Before this retriangularization can be performed on the UD array, it

is of course necessary to scale the columns by the square root of the

corresponding diagonal. These square roots can be avoided by per-

forming a modified weighted Gram-Schmidt UD triangularization
algorithm.

3p. j. Wolff, "UD Permutations via ESL Subroutine UCON," JPL IOM

314.5-1040 (internal document), Jet Propulsion Laboratory, Pasa-

dena, California, August 29, 1986.

4Since the SRI array is not unique, either Givens reflections or rota-

tions can be used.

Sp. j. Wolff, "Permuting R Matrices in Place," IOM 314.5-1091 (inter-

nal document), Jet Propulsion Laboratory, Pasadena, California,

March 10, 1987.

6S. A. Pombra, "Computationally Fast Version of UDEDIT," IOM

335.1-87-160 (internal document), Jet Propulsion Laboratory, Pasa-

dena, California, July 7, 1987.
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reduced the number of permutations necessary to reorder the

array. However, suboptimal noise-free measurement updates

were still used to perform the pairwise permutations.

It was recognized that the insertion of a row and column of

zeros into the UD array, together with the subsequent row

exchange between the artificial parameter and the parameter

of interest, created an array similar to a Morf-Kailath prearray

with zero noise variance [4]. Retriangularization of this array

into an upper-triangular Morf-Kailath postarray is easily

accomplished with fast Givens rotations. 7 This method re-

quires a one-dimensional scratch vector which manifests itself

as an augmentation of the UD array. An extra column of the

UD array permits the insertion of a row and column of zeros.

Furthermore, the method requires on the order of Prow fast

Givens rotations, where _t'row is the row distance between the
parameter and the desired location of the parameter. Due to

the nature of the fast Givens, square root computations are

never required.

This technique can also be adopted to reordering SRI

arrays. In a manner similar to the Wolff method, retriangulari-

zation is accomplished with slow Givens reflections. Unlike the
Wolff method, however, no new elements are created. Hence,

this method requires on the order of only _'column slow Givens

reflections, where _'column is the column distance between the
parameter and the desired location of the parameter.

Since the artificial parameter is only a convenient place

holder, an alternative method could be constructed that does

not incorporate the insertion/deletion step. Similar results can

be achieved by cyclically permuting the rows and columns

of the arrays. Retriangularization is then achieved as before.

Furthermore, since the size of the array does not change, it is

not necessary to augment the array with an extra column.
However, a one-dimensional scratch vector is required.

Cyclic column permutations and retriangularization of SRI

arrays have already appeared in the literature [5]. In fact, the

discussed method to cyclically permute columns of an SRI
array is similar to the left circular shift method used in the

LINPACK routine SCHEX [6].s Until now, however, these

results have not been extended to cyclic row permutations and

retriangularization of UD arrays. The permutations are per-
formed in such a way that the only difference between per-

muting UD and SRI arrays lies in the retriangularization

process.

7Since the UD array is unique, fast Givens reflections cannot be used.

SSCHEX requires two one-dimensional scratch arrays to store the
transformation pairs and does not store the upper-triangular array as a
vector.

II. Row Permutations of UD Arrays

To demonstrate the technique on UD arrays, let the factori-

zation of a covariance P with parameters U1, U2, U3, U4, U5
be

P = UDU t (1)

where

U

"ul I ul 2 ul 3 ul 4 ul s"

0 u2 2 u2 3 u2 4 u2 s

0 0 u33 u34 u3s

0 0 0 u4 4 u4 s

0 0 0 0 u5 s

(2)

and

O =

"dI 0 0 0 O"

0 d2 0 0 0

0 0 d3 0 0

0 0 0 d4 0

0 0 0 0 ds

If we designate a weighted inner product as

(:3)

x " y - Z xid'Yi (4)
i

then the covariance can be written in terms of its factorized
elements:

e___

"ul • ul ul • u2 ul "u3 ul "u4 ul • u5"

u2" ul u2" u2 u2 "u3 u2"u4 u2" u5

u3 • ul u3"u2 u3"u3 u3 .u4 u3 • u5

u4" ul u4.u2 u4"u3 u4"u4 u4"u5

u5 • ul u5 • u2 u5 .u3 u5 "u4 u5 • u5

(5)
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As usual, let Ui i = 1 to obtain a unique factorization. With this
convention, the diagonals of the D array can now be stored as

the diagonals of the U array. This new array is referred to as

the UD array: 9

UD =

"d1 //12 ul a ul 4 ul 5"

0 d2 u2 a u24 u2 s

0 0 d3 u34 u3 5

0 0 0 d4 u4 s

0 0 0 0 d s

(6)

Rows 2 and 5 of Eq. (7) can then be exchanged:

_/1 u 12 u 13 u 14 0 u 1/

0 0 0 0 0 0

0 0 d3 u3 4 0 u3 s

0 0 0 d4 0 u4 s

0 d2 u23 u24 0 u2 s

0 0 0 0 0 d s

(9)

Say it is desired to reorder the parameters as U1, U3, U4,

U2, US. The first step is to insert an artificial parameter, with
zero variance and zero correlation with the other parameters,

before parameter U5. This is accomplished by inserting into
the UD array a row of zeros above row 5 and a column of zeros

left of column 5 :

In practice, however, elements d2, u23, and u24 would not be

moved, since a scratch array would be needed to store these
elements. As will soon be evident, the second row can itself be

used as a scratch array. The array in Eq. (9) implicitly corre-

sponds to a nontriangular U array

-d 1 ul 2 ul 3 ul 4 0 Uls'7

0 d2 u23 u24 0 u2 s

0 0 d3 u3 4 0 u3 s

0 0 0 d4 0 u4 s

0 0 0 0 0 0

0 0 0 0 0 d s

The corresponding covariance is

"ul • ul ul" u2 ul" u3 ul" u4 0 ul • u57

u2"ul u2"u2 u2"u3 u2"u4 0 u2"u5

u3"ul u3"u2 u3"u3 u3"u4 0 u3"u5

u4" ul u4" u2 u4" u3 u4 "u4 0 u4" u5

0 0 0 0 0 0

u5"ul u5"u2 u5"u3 u5"u4 0 u5"u5

(7)

(8)

9The upper-triangular elements of either a UD or an SRI array are
stored contiguously in computer memory as a vector; the zero ele-
ments below the diagonal are obviously not needed to represent the
array.

"u 11

0

0
_=

0

0

0

a diagonal _ array

"dl

0

0

_=
0

0

0

ul 2 ul 3 ul 4 0 ul s"

0 0 0 0 0

0 u3 3 u3 4 0 u3 s

0 0 u4 4 0 u4 s

u2 2 u2 3 u2 4 0 u2 s

0 0 0 0 u5 s

0 0 0 0 O-

d2 0 0 0 0

0 d3 0 0 0

0 0 d4 0 0

0 0 0 0 0

0 0 0 0 d s

(lo)

(11)
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and a covariance if"

ul • ul 0

0 0

u3.ul 0

u4 • ul 0

u2 • ul 0

u5 • ul 0

ul.u3 ul-u4 ul.u2 ul.u5-

0 0 0 0

u3.u3 u3.u4 u3.u2 u3.u5

u4.u3 u4.u4 u4.u2 u4.u5

u2.u3 u2.u4 u2.u2 u2.u5

u5.u3 u5.u4 u5.u2 u5.u5

(12)

Except for the artificial parameter, this is the desired permuted

covariance. The covariance factorization in Eq. (12) can be

thought of as the product of an upper-triangular array and its

transpose:

where

= _7V/ff(_ X/_-) t (13)

"_1 0 0 0 0 0 "

0 x/d 2 0 0 0 0

0 0 v"d"a 0 0 0

0 0 0 x/d-4 0 0

0 0 0 0 0 0

0 0 0 0 0 X,Qs

(14)

It is desirable to construct an orthogonal transformation T
such that _r,q/_T is an upper-triangular array with zeros in the
second row and column:

ullx/a I ul2_/-d 2 ulax/-d 3 u14x/a 4 0 UlsV_

0 0 0 0 0 0

0 0 u33V_ 3 u34X/_ 4 0 U3svra5

0 0 0 ua4x/_ 4 0 u4sV_ s

0 u22v"a 2 u23x/'d a u24v'_ 4 0 u2sv"d s

0 0 0 0 0 U5sX/_ s

T

(15)

E ,fET =

U llX/_ 1 0 X X X UlsVCds

0 0 0 0 0 0

0 0 x x x U3sX/_ s

0 O0 x x U4sX/_ s

o o o o x .2,,,/as
0 0 0 0 0 U5sVCds

(16)

A portion of the array in Eq. (15) is similar to a Morf-Kailath

prearray with zero noise variance. Reduction of this prearray

to the postarray in Eq. (16) is easily accomplished with three
fast Givens rotations. As a result of the zero noise variance, the

first fast Givens To is simply a permutation of columns 2
and 5:

iTx/_ o =

"U11.Vrdl

0

0

0

0

0

ul2x/'d 2 ul3x/'d 3 u14_" 4 0 Uls_" s"

0 0 0 0 0

0 u3..,/;. 0 .3s s
0 0 u4,vcd, 0 U4sV'_"s

u22VQ 2 u23,v/-d3 u24VQ"4 0 U2svras

0 0 0 0 U5sX/_ s

X

"1 0 0 0 0 0"

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 -1 0 0 0 0

0 0 0 0 0 1

Ulx_cQ , 0 ulav_ 3 ul4V"d 4 u12X, Q 2 Uls.q"d s

o o o o o o

o o .3r,% ,,3.4a. o u3, ,
0 0 0 u44V_ 4 0 U4sV_s

0 0 u2ax/'a a u24V_"4 u22x/_ 2 U2sV_ s

0 0 0 0 0 U5sX/_ _

(17)
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This is the required step to produce the zeros in the second

row and column. The next fast Givens T 1 operates on columns
3 and 5 in such a way that the array element containing

u23x/'d a becomes zero. The final fast Givens T2 operates on
columns 4 and 5 such that the array element containing

u24x/_ 4 becomes zero. Each of these Givens transformations

maps the elements in each row of the columns on which they

operate into a linear combination of the same. Hence, ele-
ments not consistent with an upper-triangular structure are

never created; a linear combination of zeros is still zero. For

example, T 1 operates on Eq. (17) as follows:

Likewise, T2 operates on Eq. (18) as follows:

_4_r or, r_

J

ullx/_ 1

0

0

0

0

0

0 x ul4x/-d 4 x ulsx/J s

0 0 0 0 0

0 x u3,,ce, x u3s,jz_
0 0 u4,v_, 0 _4#_
0 0 _24_ x u2#__
0 0 0 0 U5sX/_ s

_,/_ror 1 :

ul,x/_, 0 ul3x/-d 3 ul4x/d 4 ul2x/-d 2 ulsVrds

0 0 0 0 0 0

0 0 U33N/_ 3 U34@ 4 0 U3S_ s

0 0 0 u4,X/_ 4 0 U4s vrds

0 0 u23X/_ 3 u24x/'d 4 u22x/"d 2 U2sX/_ s

0 0 0 0 0 U5sX/_ s

"1

0

0
X

0

0

0

0 0 0 0 0"

1 0 0 0 0

0 c 0 s 0

0 0 1 0 0

0 -s 0 c 0

0 0 0 0 1

X

"1 0 0 0 0 0-

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 -s c 0

0 0 0 0 0 1

ul,_ o x y y uls_
0 0 0 0 0 0

0 0 x y y u3sv_ s

0 0 0 y y U4sV_s

0 0 0 0 y u2sV_s

0 0 0 0 0 U5sx/d s

(19)

Trivially, since the transformations T_. are orthogonal, the
covariance _'in Eqs. (12) and (13) remains unchanged:

lUllV"d" 1 0 X u14x/-aT4 x UlsX/rJ;

0 0 0 0 0 0

0 0 X u34%/-d4 X U3sV_ s

0 0 0 u4,_ 0 U4s4¢_
0 0 0 u24X/_ 4 x U2SX/7 s

0 0 0 0 0 U5sV_ s

(18)

F = _4Eror _r_(_4Eror_5)'

= ff/_fft (20)

The importance of the zeros in the second row and column of

Eq. (16)is now readily apparent. Since the insertion of a row

and column of zeros into the UD array in Eq. (7) did not

affect the individual elements of the covariance in Eq. (8),

deletion of the second row and column of zeros from Eq. (16)
will have a similar null effect on the individual elements of the
covariance ft..
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III. Column Permutations of SRI Arrays

To demonstrate the technique on SRI arrays, represent an

augmented SRI array R with parameter order R1, R2, R3,
R4, R5 as

(RIZ) =

rl 1 r21 r31 r41 r5 l

0 r22 r32 r42 r52

0 0 r33 r43 r53

0 0 0 r44 r54

0 0 0 0 r5s

el1z 2

2 3
I

(21)

where Z is the residual vector. The following identity suggests

the justification of incorporating an artificial parameter into

an SRI array:

l!°0C :o°0
(22)

If there are no intentions of computing the inverse of the SRI

array, it is permissible to allow e = 0. Hence, the insertion and

subsequent deletion of an artificial row and column of zeros

into an SRI array does not affect the information content of
the array.

Say it is desired to change the parameter order to R 1, R 3,

R 4, R 2, R 5. The first step is to insert a row and column of

zeros into the (R [Z) array before the parameter R 5"

rl I r21 r31 r4 x 0 r51

0 r22 r32 r42 0 r52

0 0 r33 r43 0 r5 a

0 0 0 r44 0 r54

0 0 0 0 0 0

0 0 0 0 0 r5 s

g 1

z 2

z3 (23)

Z4

0

z$

Columns 2 and 5 of Eq. (23) can then be exchanged. This is

just a reordering of the design equation

(RIZ) =

rl I 0 r31 r41

0 0 r32 r42

0 0 r33 r43

0 0 0 r44

0 0 0 0

0 0 0 0

r21 r51 zx

r2 2 r52 z2

0 r53 z3

0 r54 _4

0 0 0

0 r5 s zs ,

(24)

It is desirable to construct an orthogonal transformation 7o

such that To(R IZ) has only zeros in the second row and col-
umn. Such a transformation is just a permutation of rows 2
and 5:

"1 0

0 0

0 0
To(R,Z ) =

0 0

0 1

0 0

o o o o

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

X

rl 1 0 r31 r41 r21 r5 x

0 0 r32 r42 r22 r52

0 0 r3 3 r4 3 0 r5 a

0 0 0 r4 4 0 r5 4

0 0 0 0 0 0

0 0 0 0 0 r5 s

71

4

0

$

rl 1

0

0

0

0

0

r31

0

r3 3

0

r3 2

0

r41

0

r43

r4,

r42
0

r21

0

0

0

r2 2

0

r51

0

r53

r54

r52

r5 s

z 1

0

g3

Z4

Z_

zsl

(:,.5)
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In practice, however, elements r32 and r42 would not be
moved, since a scratch array would be needed to store these

elements. As is evident, the second row can itself be used as a

scratch array. It is now a simple matter of retriangularizing

Eq. (25) with two slow Givens. The first Givens T 1 operates
on rows 3 and 5 in such a way that the array element contain-

ing r32 becomes zero. The second Givens T2 operates on
rows 4 and 5 in such a way that the array element containing

r42 becomes zero. Each of these Givens transformations maps
the elements in each column of the rows on which they oper-
ate into a linear combination of the same. Elements not con-

sistent with an upper-triangular structure are never created.

For example, T 1 operates on Eq. (25) as follows:

r, ro(elz ) :

"1 0 0 0 0 O"

0 1 0 0 0 0

0 0 c 0 s 0

0 0 0 1 0 0

0 0 +s 0 T-c 0

0 0 0 0 0 1

X

"rl 1 0 r31 r41 r21 r51

0 0 0 0 0 0

0 0 r33 r43 0 r53

0 0 0 r44 0 r54

0 0 r32 r42 r22 r52

0 0 0 0 0 r5 s

z 1

0

z 3

Z4

z 2

z 5

Likewise,

r_T,ro(g lz ) =

T2 operates on Eq. (26) as follows:

1 0 0 0 0 0-

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 +s _-c 0

0 0 0 0 0 1

X

rl 1 0 r31 r41 r21 r51

0 0 0 0 0 0

0 0 x x x x

0 0 0 r4 4 0 r5 4

0 0 0 x x x

0 0 0 0 0 r5 s

)11 0 r3 a r41 r21 r51

0 0 0 0 0 0

0 0 x x x x

0 0 0 y y y

0 0 0 0 y y

0 0 0 0 0 r5 s

z 1

0

x

Z4

x

z 5

z 1

0

x

Y

Y

z 5

(27)

rl I 0 r31 r41 r21 r51

0 0 0 0 0 0

0 0 x x x x

0 0 0 r4 4 0 r5 4

0 0 0 x x x

0 0 0 0 0 r5 s

0

x

Z4

x

z5

(26)

From Eq. (22) it is a trivial matter that the second row and

column of zeros of Eq. (27) can then be deleted.

IV. Cyclic Permutations

Since the artificial parameter is only a convenient place

holder, an alternative method can be constructed that does not

incorporate the insertion/deletion step. By cyclically per-

muting the rows and columns of either the UD or SRI arrays,

a data structure similar to Eq. (17) or Eq. (25), respectively,

can be achieved. For example, cyclically left permuting col-

umns 2 through 4 of Eq. (21) yields the following:
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rl 1 r31 r41 r21 r51

0 r32 r42 r22 r52

0 r33 r43 0 r53

0 0 r44 0 r54

0 0 0 0 r5 s

z3I
z4 [

(28)

Cyclically upward permuting rows 2 through 4 of Eq. (28)

then yields

rl 1 r31 r41 r21 r51

0 r33 r43 0 r53

0 0 r44 0 r54

0 r32 r42 r22 r52

0 0 0 0 r5 s

21

Z3

q

z 2

z s

(29)

This is the desired data structure of Eq. (25) without the arti-

ficial parameter. Slow Givens sweeps across rows 2,4 and

rows 3,4 of Eq. (29) can then be applied to zero out the array

elements containing r32 and r42, respectively. Since the size
of the array never changes, this method would not require that

the array be augmented with an extra column. However, one

explicit scratch array is required to hold that part of Eq. (29)

not consistent with an upper-triangular data structure.

V. Implementation

When dealing with large arrays on a virtual memory ma-

chine, computations should be arranged to minimize expensive

page faulting. The Givens sweeps should access contiguous

storage locations. The usual column ordering of a vector-stored
upper-triangular data structure with n rows and n columns is
as follows:

Solumn =

7(1) s(2) s(4)

0 s(3) s(5)

0 0 s(6) ...

0 0 0

?12 -- ?/

+1)

t///2 -- ?/

STT- +2)

- n +3)

(31)

Element Scolumn (i, ]) is easily referenced as s [(/2 _ ]/2) +i].

For UD arrays, the Givens sweeps down the columns using the

data storage in Eq. (31) would require minimal paging. For
SRI arrays, the Givens sweeps across the rows with the data

storage in Eq. (31) would be paging intensive. Hence, for

SRI arrays, it proves to be more efficient to store the upper-
triangular array with unnatural row ordering as follows:

A similar approach can also be taken toward permuting

UD arrays. Cyclic permutations of the rows and columns
would yield the data structure in Eq. (17) without the artifi-

cial parameter:

//llV_ 1 u 13x/d 3 ul4x_ 4 u 12,v/-d2 u ls_/'0

0 u3.v 4 0 u3,vT,
0 0 .4.v7. 0 u4,vT,

0 u23v'd 3 u2,1V'74 u22v'-d = U2sV'-_s

0 0 0 0 U5sV_ s

(30)

Fast Givens sweeps down columns 2,4 and columns 3,4 of

Eq. (30) can then be applied to zero out the array elements

containing u23x/-d-3 and u24vrd4, respectively.

S
row

_(1)

0

0

0

s(2) s(3) ... s(n)

s(n + 1) s(n + 2) ... s(2n - 1)

0 s(2n) ... s(37/- 3)

0 0

(3::)

Element Sro w (i, ] ) can be referenced as s[ j + (i 2 - i/2)

+ (i - 1) (n - i)] .lO Since filtering software generally stores

l°Srow(i, ]) = Scolumn(i, j ); this is just a relabeling of the elements.
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upper-triangular arrays according to Eq. (31), it would be

necessary to relabel from Scolumn to Sro w before the permu-

tations and then back to Scolumn afterward.

It is equally easy to perform cyclic permutations with

either Eq. (31) or Eq. (32). In the former, movement is along
the columns; in the latter, movement is across the rows. The

only paging-intensive step in cyclically permuting the rows and

columns with data storage Scolumn (Srow) is in storing the
upper row (left column) into a scratch array.

Vl. Performance

To assess the permutation methods on UD arrays, an upper-
triangular array was constructed with 499 parameters and an

estimate column. The following permutations were then per-

formed on a VAX 11/780. First, the parameters were per-

muted randomly. In practice, of course, this would never hap-

pen. It is more realistic to move blocks of parameters to the

bottom of the array. Therefore, the following systematic per-

mutations were performed. A block of 10 parameters starting
in rows 1, 167, and 334 were moved to the bottom of the

array. These permutations were then repeated with a block of

100 parameters. CPU time and page faults were accumulated

for three different methods. First, the ESL routine HHPOST

was used to apply a post-Householder to a row-reordered

column-scaled UD array. Second, pairwise permutations were

performed with suboptimal noise-free measurement updates.

This is equivalent to the ESL routine U2U. Third, the permu-

tations were performed with the discussed method of cyclic

permutations with fast Givens sweeps. The results are pre-
sented in Table 1.

The ESL method with HHPOST performs the same regard-

less of the number and type of permutations performed. The

performance of the other methods depends on the number and

type of permutations. The cyclic permutation method with

fast Givens sweeps is shown to be superior to the ESL method

in U2U. Furthermore, in the cyclic permutation method, as

the starting row moves down there are fewer elements to

retriangularize.

The ESL has standard routines to perform permutations on

SRI arrays. The routine R2A copies and reorders the columns

of an upper-triangular array into a two-dimensional work array.

A Householder transformation can then be applied with rou-

tine TDHHT to retriangularize back to an upper-triangular

array.

To assess the permutation methods on SRI arrays, ESL rou-

tines R2A/TDHHT, the discussed method of cyclic permuta-

tions with slow Givens sweeps using data storage Scolumn , and

the same with data storage Srow were used to permute an
upper-triangular array with 499 parameters and a residual

column. CPU time and page faults were accumulated for per-

muting, retriangularizing, and any necessary relabeling. The

results are presented in Table 2.

The ESL method performs the same regardless of the num-

ber and type of permutations performed. The performance of

the cyclic permutations with slow Givens sweeps depends on
the number and type of permutations. As the starting column

is moved to the right, not only are there fewer elements to

retriangularize, but the lengths of Givens sweeps also become
smaller, and fewer computations are required. Since the VAX

11/780 is a virtual memory machine, the method with data

storage Sro w is generally superior to the method with data

storage Scolumn. For fixed memory machines or small SRI

arrays, the method with data storage Scolumn should be
superior, since no relabeling or unlabeling is required.

VII. Conclusion

The most efficient method to permute UD (SRI) arrays has

been shown to be cyclic permutation with fast (slow) Givens

sweeps for retriangularization. Since the only difference is in

the retriangularization process, it has been possible to combine
the methods into one subroutine. This method has been incor-

porated into the OASIS software [7] and should prove to be

advantageous for GPS, TOPEX, and DSN high-earth-orbiter

data processing and analysis.
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Table 1. CPU and paging faults in permuting UD arrays

CPU time; thousands of page faults

Permutations
ESL Cyclic permutations

ESL U2U
HHPOST and fast Givens

0:33:06 1:06:31 0:17:04
Random

1025 2051 612

Rows 0:32:43 0:48:55 0:01:24

1-10 948 1823 40

Rows 0:31:49 0:40:00 0:01:14

167-176 970 1338 35

Rows 0:31:12 0:24:26 0:00:45

334-343 970 728 21

Rows 0:32:44 0:59:25 0:11:23

1-100 968 1985 363

Rows 0:31:32 0:48:47 0:08:46

167-266 946 1433 275

Rows 0:30:59 0:27:29 0:02:20

334--433 973 747 52

Table 2. CPU and paging faults in permuting SRI arrays

CPU time; thousands of page faults

Cyclic permutations Cyclic permutations
Permutations

ESL and slow Givens and slow Givens

TDHHT using data storage using data storage

Scolumn Srow

0:22:28 0:41:09 0:20:07
Random

729 3253 575

Columns 0:20:29 0:01:36 0:01:38

1-10 717 48 55

Columns 0:21:13 0:00:55 0:01:03

167-176 723 31 41

Columns 0:21:53 0:00:20 0:00:39

334-343 719 11 27

Columns 0:21:25 0:13:11 0:11:10

1-100 727 424 411

Columns 0:21:15 0:06:14 0:05:14

167-266 714 229 205

Columns 0:21:03 0:00:51 0:01:43

334-433 723 52 104
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